A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways
نویسندگان
چکیده
There is a need for energy storage to improve the efficiency and effectiveness of energy distribution with the increasing penetration of renewable energy sources. Among the various energy storage technologies being developed, ‘power-to-gas’ is one such concept which has gained interest due to its ability to provide long term energy storage and recover the energy stored through different energy recovery pathways. Incorporation of such systems within the energy infrastructure requires analysis of the key factors influencing the operation of electrolyzers and hydrogen storage. This study focusses on assessing the benefits power-to-gas energy storage while accounting for uncertainty in the following three key parameters that could influence the operation of the energy system: (1) hourly electricity price; (2) the number of fuel cell vehicles serviced; and (3) the amount of hydrogen refueled. An hourly time index is adopted to analyze how the energy hub should operate under uncertainty. The results show that there is a potential economic benefit for the power-to-gas system if it is modeled using the two-stage stochastic programming approach in comparison to a deterministic optimization study. The power-to-gas system also offers environmental benefits both from the perspective of the producer and end user of hydrogen.
منابع مشابه
Two-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy
The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...
متن کاملEffect of Wind Turbine, Solar Cells and Storages in Short Term Operation of Coupled Electricity and Gas Infrastructures in Different Climates
The biggest challenges faced in big cities are greenhouse gas emission and growing energy needs. Efficient utilization of existing infrastructures has a prominent role in response to the challenges. Energy hub approach embraces performance of different energy networks. Energy hub is defined as a super node in electrical system receiving distinctive energy carriers such as gas and electricity in...
متن کاملStochastic Optimal Operation and Risk Analysis for Integrated Power and Gas Systems
The increment integration of renewable distributed energies means the desired operation of the electric power system will significantly depend on the performance of primary energy. In this order, an integrated approach for mutual interaction between the electricity and natural gas systems has been considered for the purpose of ensuring optimal energy exchanging between the electric power system...
متن کاملThe Optimal Power Flow of Multiple Energy Carriers in Networked Multi-Carrier Microgrid
The future distribution network comprising different energy carriers will include small-scale energy resources (SSERs) and loads, known as a Networked multi-carrier microgrid (NMCMG). This concept not only leads to an efficient reduction in operation costs, but also encompasses the energy transformation between gas and electric networks at combined nodes, as well as district heating networks. I...
متن کاملStochastic Assessment of the Renewable–Based Multiple Energy System in the Presence of Thermal Energy Market and Demand Response Program
The impact of different energy storages on power systems has become more important due to the development of energy storage technologies. This paper optimizes the stochastic scheduling of a wind-based multiple energy system (MES) and evaluates the operation of the proposed system in combination with electrical and thermal demand-response programs and the three-mode CAES (TM-CAES) unit. The prop...
متن کامل